

Finite Automata
Part One

Recap

Let P be some predicate. The principle of mathematical
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts
true…

…and it stays
true…

…then it's
always true.

Let P be some predicate. The principle of complete
induction states that if

P(0) is true

and

for all k ∈ ℕ, if P(0), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)

If it starts
true…

…and it stays
true…

…then it's
always true.

Outline for Today

● Computability Theory
● What problems can we solve with a

computer?

● Formal Language Theory
● What is a language?

● Finite Automata
● A very simple model of a computing device.

Computability Theory

What problems can we solve with a computer?

What problems can we solve with a computer?

What kind of
computer?

Two Challenges

● Computers are dramatically better now than
they’ve ever been, and that trend continues.

● Writing proofs on formal defnitions is hard,
and computers are way more complicated than
sets, graphs, or functions.

● Key Question: How can we prove what
computers can and can’t do…
● … so that our results are still true in 20 years?
● … without multi-hundred page proofs?

Enter Automata

● An automaton (plural: automata) is a
mathematical model of a computing device.

● It’s an abstraction of a real computer, the way
that graphs are abstractions of social networks,
transportation grids, etc.

● The automata we’ll explore are
● powerful enough to capture huge classes of

computing devices, yet
● simple enough that we can reason about them

● They’re also fascinating and useful on their own

Toward a Model of Computation...

Why does this
computer
“feel” less
powerful…

Why does this
computer
“feel” less
powerful…

…than this one?…than this one?

7 8 9 ÷

4 5 6 ×

1 2 3
–

0 . = +

Calculators vs. Desktops

● A calculator has a small amount of memory. A
desktop computer has a large amount of
memory.

● A calculator performs a fxed set of functions. A
desktop is reprogrammable and can run many
diferent programs.

● These two distinctions account for much of the
diference between “calculator-like” computers
and “desktop-like” computers.

● We'll frst explore “small-memory” computers, then
discuss “large-memory” computers

Computing with Finite, Fixed Memory

7 8 9 ÷

4 5 6 ×

1 2 3
–

0 . = +

Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored in wood.
Algorithm is in the brain.
Memory limited by beads.

Data stored in wood.
Algorithm is in the brain.
Memory limited by beads.

Other Examples

How do we model “memory” and
“an algorithm” when they can take

on so many forms?

7 8 9 ÷
4 5 6 ×
1 2 3

–

0 . = +

What’s in Common?

● These machines receive input
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change confguration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read of an answer based
on the confguration of the
device.

Modeling Finite Computation
● We will model a fnite-

memory computer as a
collection of states
linked by transitions.

● Each state corresponds
to one possible
confguration of the
device’s memory.

● Each transition indicates
how memory changes in
response to inputs.

● Some state is designated
as the start state. The
computation begins in
that state.

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

Modeling Finite Computation
● This device processes

strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₁

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₁

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start q₀

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₂

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

● This device processes
strings of characters.

● Each character is an
external input

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that
character.

Modeling Finite Computation

● Some of the states in our
computational device will be
marked as accepting states.
These are denoted with a
double ring.

● If the device ends in an
accepting state after seeing all
the input, accepts the input
(says YES)

● If the device does not end in an
accepting state after seeing all
the input, it rejects the input
(says NO).

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

 start

q₃

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

q₃q₃

● Some of the states in our
computational device will be
marked as accepting states.
These are denoted with a
double ring.

● If the device ends in an
accepting state after seeing all
the input, accepts the input
(says YES)

● If the device does not end in an
accepting state after seeing all
the input, it rejects the input
(says NO).

Modeling Finite Computation

a b a b ab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

q₃q₃

● Some of the states in our
computational device will be
marked as accepting states.
These are denoted with a
double ring.

● If the device ends in an
accepting state after seeing all
the input, accepts the input
(says YES)

● If the device does not end in an
accepting state after seeing all
the input, it rejects the input
(says NO).

Modeling Finite Computation

● Try it yourself! Which
of these strings does
this device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₀q₀

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₁q₁

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₁q₁

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₀q₀

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₀q₀

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₂

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₂

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

q₂

Modeling Finite Computation

● Try it yourself!
Which of these
strings does this
device accept?

aab

aabb

abbababba

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

a a b

Finite Automata

● This device is a fnite
automaton (plural:
fnite automata).

● Finite automata model
computers where (1)
memory is fnite and
(2) the computation
produces a YES/NO
answer.

● In other words, fnite
automata model
predicates, and do so
with a fxed, fnite
amount of memory.

Finite-memory
Computer

input

YES

NO

q₀ q₁

q₃q₂

a

a

a

a

 bb bb

q₀

q₃

 start

Formalization

Strings

● An alphabet is a fnite, nonempty set of symbols
called characters.

● Typically, we use the symbol Σ to refer to an
alphabet.

● A string over an alphabet Σ is a fnite sequence
of characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over
Σ:

a aabaaabbabaaabaaaabbb abbababba

● But wait! There are no quotes here!

● The empty string has no characters and is
denoted ε.

Languages

● A language over Σ is a set of strings over Σ.

● Example: The language of palindromes over Σ =
{a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in Σ
is denoted Σ*.
● Formally: Σ* = { w | w is a string over Σ }.

● Formally, we say that L is a language over Σ
when L ⊆ Σ*.

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the… ?

The symbol ε is the empty string.

The symbol Σ denotes an alphabet.

The expression Σ* means “all strings that
can be made from characters in Σ.”

That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.

Ever get confused? Just ask!

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the element-of relation.

The symbol ε is the empty string.

The symbol Σ denotes an alphabet.

The expression Σ* means “all strings that
can be made from characters in Σ.”

That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.

Ever get confused? Just ask!

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the element-of relation.

● The symbol ε is the… ?

The symbol Σ denotes an alphabet.

The expression Σ* means “all strings that
can be made from characters in Σ.”

That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.

Ever get confused? Just ask!

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the element-of relation.

● The symbol ε is the empty string.

The symbol Σ denotes an alphabet.

The expression Σ* means “all strings that
can be made from characters in Σ.”

That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.

Ever get confused? Just ask!

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the element-of relation.

● The symbol ε is the empty string.

● The symbol Σ denotes… ?

The expression Σ* means “all strings that
can be made from characters in Σ.”

That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.

Ever get confused? Just ask!

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the element-of relation.

● The symbol ε is the empty string.

● The symbol Σ denotes an alphabet.

The expression Σ* means “all strings that
can be made from characters in Σ.”

That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.

Ever get confused? Just ask!

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the element-of relation.

● The symbol ε is the empty string.

● The symbol Σ denotes an alphabet.
● The expression Σ* means “all strings that can

be made from characters in Σ.”

● That lets us write things like

● We have ε ∈ Σ*, but ε ∉ Σ.

● Ever get confused? Just ask!

The Cast of Characters

● Languages are sets of strings.

● Strings are fnite sequences of characters.

● Characters are individual symbols.

● Alphabets are sets of characters.

Languages

Strings

are sets of

Characters
are fnite sequences of

Alphabets

are nonempty, fnite sets of

Finite Automata and Languages

● Let A be an
automaton that
processes strings
drawn from an
alphabet Σ.

● The language of A,
denoted ℒ(A), is the
set of strings over Σ
that A accepts:

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

 q₁

Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
 start
b

b

a

 q₁

● Let D be the automaton shown to the right. It
processes strings over {a, b}.

● Notice that D accepts
all strings of a’s and b’s
that end in a and
rejects everything else.

●

● So ℒ(D) = { w ∈ {a, b}* | w ends in a }.

 ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ start
a, b

 q₁
a, b

q₀

q₀ start a, b

q₁
a, b

q₂

a, b

This means “take this
transition if you see

an a or a b.”

This means “take this
transition if you see

an a or a b.”

q₀ start
 a, bq₀(I) (II)

(III)

Go to
PollEv.com/cs103spr25

Go to
PollEv.com/cs103spr25

The Story So Far

● A fnite automaton is a collection of states joined by
transitions.

● Some state is designated as the start state.

● Some number of states are designated as accepting states.

● The automaton processes a string by beginning in the start
state and following the indicated transitions.

● If the automaton ends in an accepting state, it accepts the
input.

● Otherwise, the automaton rejects the input.

● The language of an automaton is the… ? set of strings it
accepts.

The Story So Far

● A fnite automaton is a collection of states joined by
transitions.

● Some state is designated as the start state.

● Some number of states are designated as accepting states.

● The automaton processes a string by beginning in the start
state and following the indicated transitions.

● If the automaton ends in an accepting state, it accepts the
input.

● Otherwise, the automaton rejects the input.

● The language of an automaton is the set of strings it
accepts.

A Small Problem

q0

q1

 0

start

q2 1

0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

A Small Problem

q0

q1

 0

start

q2 1

0 0 1 1 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

Another Small Problem

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

0 0 0

The Need for Formalism

● To reason about what fnite automata can
and cannot do, we should specify their
behavior in all cases.

● The following need to be defned or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple

transitions out of a state on some input?

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton that
we will see in this course.

DFAs

● A DFA is defned relative to some alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defned for each symbol
in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.

● There are zero or more accepting states.

Is this a DFA over {0, 1}?

q0 q1

q2q3

0

 1

0

1

0

1 1

0

start

q2

Is this a DFA over {0, 1}?

q0

q2

0

start

q4

 0

0

q1

q3

1

1

1

0

1

 0 1

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

q0

q1

 0

start

q2 1

0

Is this a DFA over {0, 1}?

q0 q1
0, 1start

q3

 0, 10, 1

q2
0, 1

Is this a DFA over {0, 1}?

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Is this a DFA over {0, 1}?

q0

q2

0, 1start
q1

 0

 0, 1

0, 1

Designing DFAs

● At each point in its execution, the DFA can only
remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information you
need to remember.
● Each state acts as a “memento” of what you're

supposed to do next.
● Only fnitely many diferent states means only

fnitely many diferent things the machine can
remember.

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start

a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1

b

a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1

b

a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
 to two modulo three }

q0

start
q1 q2

b b

a a a

b

Each state remembers
the remainder of the
number of bs seen so
far modulo three.

Each state remembers
the remainder of the
number of bs seen so
far modulo three.

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1

a

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 a, b

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

Recognizing Languages with DFAs

L = { w ∈ {a, b}* | w contains aa as a substring }

q0

start
q1 q2

a

a

b

b

 Σ

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

We'll design a DFA for comments! Some cases we need to handle:

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

We'll design a DFA for comments! Some cases we need to handle:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment }

q1

start
q2

* q3

*

q4
/q0

/

q5

 a, / *
a

a, *

/, a

Σ

Σ

Next Time

● Regular Languages
● An important class of languages.

● Nondeterministic Computation
● Why must computation be linear?

● NFAs
● Automata with superpowers.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115

