
  

Finite Automata
Part One



  

Recap



  

Let P be some predicate. The principle of mathematical
induction states that if

P(0) is true

and

∀k ∈ ℕ. (P(k) → P(k+1))

then

∀n ∈ ℕ. P(n)

If it starts
true…

…and it stays
true…

…then it's
always true.



  

Let P be some predicate. The principle of complete
induction states that if

P(0) is true

and

for all k ∈ ℕ, if P(0), …, and P(k) are true,
then P(k+1) is true

then

∀n ∈ ℕ. P(n)

If it starts
true…

…and it stays
true…

…then it's
always true.



  

Outline for Today

● Computability Theory
● What problems can we solve with a

computer?

● Formal Language Theory
● What is a language?

● Finite Automata
● A very simple model of a computing device.



  

Computability Theory



  

What problems can we solve with a computer?



  

What problems can we solve with a computer?

What kind of
computer?



  

Two Challenges

● Computers are dramatically better now than
they’ve ever been, and that trend continues.

● Writing proofs on formal defnitions is hard,
and computers are way more complicated than
sets, graphs, or functions.

● Key Question: How can we prove what
computers can and can’t do…
● … so that our results are still true in 20 years?
● … without multi-hundred page proofs?



  

Enter Automata

● An automaton (plural: automata) is a
mathematical model of a computing device.

● It’s an abstraction of a real computer, the way
that graphs are abstractions of social networks,
transportation grids, etc.

● The automata we’ll explore are
● powerful enough to capture huge classes of

computing devices, yet
● simple enough that we can reason about them 

● They’re also fascinating and useful on their own



  

Toward a Model of Computation...



  

Why does this
computer
“feel” less
powerful…

Why does this
computer
“feel” less
powerful…

…than this one?…than this one?
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Calculators vs. Desktops

● A calculator has a small amount of memory. A
desktop computer has a large amount of
memory. 

● A calculator performs a fxed set of functions. A
desktop is reprogrammable and can run many
diferent programs.

●  These two distinctions account for much of the
diference between “calculator-like” computers
and “desktop-like” computers.

● We'll frst explore “small-memory” computers, then
discuss “large-memory” computers 



  

Computing with Finite, Fixed Memory
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Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored electronically.
Algorithm is in silicon.

Memory limited by display.

Data stored in wood.
Algorithm is in the brain.
Memory limited by beads.

Data stored in wood.
Algorithm is in the brain.
Memory limited by beads.



  

Other Examples



  

How do we model “memory” and
“an algorithm” when they can take

on so many forms?
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What’s in Common?

● These machines receive input 
from an external source.

● That input is provided
sequentially, one discrete unit
at a time.

● Each input causes the device to
change confguration. This
change, big or small, is where
the computation happens.

● Once all input is provided, we
can read of an answer based
on the confguration of the
device.



  

Modeling Finite Computation
● We will model a fnite-

memory computer as a
collection of states 
linked by transitions.

● Each state corresponds
to one possible
confguration of the
device’s memory. 

● Each transition indicates
how memory changes in
response to inputs.

● Some state is designated
as the start state. The
computation begins in
that state.

q₀ q₁

q₃q₂

a
 
 
a

a
 
 
a

  bb    bb  

   start     



  

Modeling Finite Computation
● This device processes

strings of characters.

● Each character is an
external input 

● The string is a sequence of
inputs to the device.

● To run this device, we begin
in our start state and scan
the input from left to right.

● Each time the machine sees
a character, it changes
state by following the

transition labeled with that 
character.

a b a b ab

q₀ q₁
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a

  bb    bb  
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Modeling Finite Computation

● Some of the states in our
computational device will be
marked as accepting states.
These are denoted with a
double ring.

● If the device ends in an
accepting state after seeing all
the input, accepts the input
(says YES)

● If the device does not end in an
accepting state after seeing all
the input, it rejects the input
(says NO).
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Modeling Finite Computation

● Try it yourself! Which
of these strings does
this device accept?
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Finite Automata

● This device is a fnite
automaton (plural:
fnite automata).

● Finite automata model
computers where (1)
memory is fnite and
(2) the computation
produces a YES/NO 
answer.

● In other words, fnite
automata model
predicates, and do so
with a fxed, fnite
amount of memory.

Finite-memory
Computer

input  

YES

NO
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Formalization



  

Strings

● An alphabet is a fnite, nonempty set of symbols
called characters.

● Typically, we use the symbol Σ to refer to an
alphabet.

● A string over an alphabet Σ is a fnite sequence
of characters drawn from Σ.

● Example: Let Σ = {a, b}. Here are some strings over
Σ:

a    aabaaabbabaaabaaaabbb    abbababba  

● But wait! There are no quotes here!

● The empty string has no characters and is
denoted ε.



  

Languages

● A language over Σ is a set of strings over Σ.

● Example: The language of palindromes over Σ =
{a, b, c} is the set
● {ε, a, b, c, aa, bb, cc, aaa, aba, aca, bab, … }

● The set of all strings composed from letters in Σ
is denoted Σ*.
● Formally: Σ* = { w | w is a string over Σ }.

● Formally, we say that L is a language over Σ
when L ⊆ Σ*.

 



  

Mathematical Lookalikes

● We now have ∈, ε, Σ, and Σ*. Yikes!

● The symbol ∈ is the… ?

The symbol ε is the empty string.

The symbol Σ denotes an alphabet.

The expression Σ* means “all strings that
can be made from characters in Σ.”

That lets us write things like

We have ε ∈ Σ*, but ε ∉ Σ.  

Ever get confused? Just ask!
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The Cast of Characters

● Languages are sets of strings.

● Strings are fnite sequences of characters.

● Characters are individual symbols.

● Alphabets are sets of characters.

Languages

Strings

are sets of            

Characters
are fnite sequences of

Alphabets

are nonempty, fnite sets of                           



  

Finite Automata and Languages

● Let A be an
automaton that
processes strings
drawn from an
alphabet Σ.

● The language of A,
denoted ℒ(A), is the
set of strings over Σ
that A accepts:

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
    start     
b
 

b
 

 

a
 

 q₁



  

Finite Automata and Languages

ℒ(A) = { w ∈ Σ* | A accepts w }

q₀ q₁
a
    start     
b
 

b
 

 

a
 

 q₁

● Let D be the automaton shown to the right. It
processes strings over {a, b}.

● Notice that D accepts
all strings of a’s and b’s
that end in a and
rejects everything else.

●

● So ℒ(D) = { w ∈ {a, b}* | w ends in a }.



  ℒ(A) = { w ∈ Σ* | A accepts w }

q₀   start     
a, b

 q₁
a, b

q₀

q₀   start     a, b

 

q₁
a, b

 

q₂

a, b

This means “take this
transition if you see

an a or a b.”

This means “take this
transition if you see

an a or a b.”

q₀   start     
       a, bq₀(I) (II)

(III)

Go to
PollEv.com/cs103spr25

Go to
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The Story So Far

● A fnite automaton is a collection of states joined by
transitions.

● Some state is designated as the start state.

● Some number of states are designated as accepting states.

● The automaton processes a string by beginning in the start
state and following the indicated transitions.

● If the automaton ends in an accepting state, it accepts the
input.

● Otherwise, the automaton rejects the input.

● The language of an automaton is the… ? set of strings it
accepts.
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A Small Problem
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The Need for Formalism

● To reason about what fnite automata can
and cannot do, we should specify their
behavior in all cases.

● The following need to be defned or
disallowed:
● What happens if there is no transition out of

a state on some input?
● What happens if there are multiple 

transitions out of a state on some input?



  

DFAs

● A DFA is a
● Deterministic
● Finite
● Automaton

● DFAs are the simplest type of automaton that
we will see in this course.



  

DFAs

● A DFA is defned relative to some alphabet Σ.

● For each state in the DFA, there must be
exactly one transition defned for each symbol
in Σ.
● This is the “deterministic” part of DFA.

● There is a unique start state.

● There are zero or more accepting states.



  

Is this a DFA over {0, 1}?
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Designing DFAs

● At each point in its execution, the DFA can only
remember what state it is in.

● DFA Design Tip: Build each state to
correspond to some piece of information you
need to remember.
● Each state acts as a “memento” of what you're

supposed to do next.
● Only fnitely many diferent states means only

fnitely many diferent things the machine can
remember.
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L = { w ∈ {a, b}*| the number of b's in w is congruent
         to two modulo three }
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Recognizing Languages with DFAs

L = { w ∈ {a, b}*| the number of b's in w is congruent
         to two modulo three }
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Each state remembers
the remainder of the
number of bs seen so
far modulo three.

Each state remembers
the remainder of the
number of bs seen so
far modulo three.
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More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

We'll design a DFA for comments! Some cases we need to handle:

Let’s have the a symbol be a placeholder for “some character that
isn’t a star or slash.”

We'll design a DFA for comments! Some cases we need to handle:

Accepted:

/*a*/
/**/
/***/

/*aaa*aaa*/
/*a/a*/

Rejected:

/**
/**/a/*aa*/
aaa/**/aa

/*/
/**a/
//aaaa



  

More Elaborate DFAs
L = { w ∈ {a, *, /}* | w represents a C-style comment  }

q1

start
q2

* q3

*

q4
/q0

/

q5

     a, /      *
a

a, *

/, a

Σ  

Σ



  

Next Time

● Regular Languages
● An important class of languages.

● Nondeterministic Computation
● Why must computation be linear?

● NFAs
● Automata with superpowers.
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