Finite Automata

Part One



Recap



Let P be some predicate. The principle of mathematical
induction states that if

K\ 1 vor .
1f it <tarts P(0) is true amiy:(e sTaus
True.. and )

Vk € N. (P(k) -» P(k+1))
then

vVn € N. P(n)

Then it's
always True,



Let P be some predicate. The principle of complete
induction states that if

= P(0) is true .and it stays
It it starts ue
True.. and

forall k € N, if P(0), ..., and P(k) are true,
then P(k+1) is true

then

vVn € N. P(n)

.Then 11's
always True,



Outline for Today

« Computability Theory

 What problems can we solve with a
computer?

« Formal Language Theory
 What is a language?
 Finite Automata

« A very simple model of a computing device.



Computability Theory



What problems can we solve with a computer?



What problems can we solve with a computer?

/

What kind of
computer?



Two Challenges

 Computers are dramatically better now than
they’ve ever been, and that trend continues.

« Writing proofs on formal definitions is hard,
and computers are way more complicated than
sets, graphs, or functions.

 Key Question: How can we prove what
computers can and can’t do...

* ... so that our results are still true in 20 years?
... without multi-hundred page proofs?



Enter Automata

An automaton (plural: automata) is a
mathematical model of a computing device.

It’s an abstraction of a real computer, the way
that graphs are abstractions of social networks,
transportation grids, etc.

The automata we’ll explore are

« powerful enough to capture huge classes of
computing devices, yet

« simple enough that we can reason about them
They’re also fascinating and useful on their own



Toward a Model of Computation...
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powertul..

.Than This one?




Calculators vs. Desktops

A calculator has a small amount of memory. A
desktop computer has a large amount of
memory.

A calculator performs a fixed set of functions. A
desktop is reprogrammable and can run many
different programs.

These two distinctions account for much of the
difference between “calculator-like” computers
and “desktop-like” computers.

We'll first explore “small-memory” computers, then
discuss “large-memory” computers



Computing with Finite, Fixed Memory
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Data stored electronically, Data stored in wood,
Algorithm is in silicon, Algorithm is in the brain,
Memory limited by display, Memory limited by beads.,
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How do we model “memory” and
“an algorithm” when they can take
on so many forms?



What’s in Common?

These machines receive input

from an external source. 7 8 9 =
That input is provided 4 5 6 x
sequentially, one discrete unit 1 2 3 -
at a time.

O . = +

Each input causes the device to
change configuration. This
change, big or small, is where
the computation happens.

Once all input is provided, we
can read off an answer based
on the configuration of the
device.




Modeling Finite Computation

We will model a finite-

memory computer as a start a
collection of states 4’@2 m

linked by transitions. a ™
Each state corresponds b |b bl |b
to one possible 3
configuration of the @ Z qu
device’s memory.

Each transition indicates
how memory changes in
response to inputs.

Some state is designated
as the start state. The
computation begins in
that state.



Modeling Finite Computation

« This device processes

strings of characters. a
start
 Each character is an g qoz m

external input d
« The string is a sequence of b b b b
inputs to the device.
Y d
» To run this device, we begin @ Z qs )
in our start state and scan 3
the input from left to right.
 Each time the machine sees Li bjajbjbja

a character, it changes
state by following the

transition labeled with that
character.
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« Some of the states in our a
computational device will be M@Z m
marked as accepting states.
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 If the device ends in an v 2
accepting state after seeing all @ z qs )
the input, accepts the input
(says YES) 3

. If the device does not end in an albja|b|b]|a

accepting state after seeing all
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Modeling Finite Computation

« Some of the states in our
computational device will be
marked as accepting states.
These are denoted with a
double ring.

« If the device ends in an
accepting state after seeing all
the input, accepts the input
(says YES)

« If the device does not end in an
accepting state after seeing all
the input, it rejects the input
(says NO).

OF APPROVAL




Modeling Finite Computation

« Try it yourselt! Which

d
of these strings does 2 m
bl |b

this device accept? a
aab bl b
Y d
ommo
abbababba a

Go to
PollEv.com/cs103spr25
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Modeling Finite Computation
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Modeling Finite Computation

» Try it yourself! a
Which of these 2 m
b| |b

strings does this » T
device accept?

aab @ z
aabb 2

abbababba ajalb




Finite Automata

 This device is a finite

automaton (plural: 2 ) m
y
b b

finite automata). 2

 Finite automata model b b
computers where (1) ¢ s
memory is finite and @ ZB
(2) the computation

produces a YES/NO

allSwWer. : ..
input | Finite-memory

« In other words, finite Computer

automata model
predicates, and do so
with a fixed, finite
amount of memory.



Formalization



Strings

An alphabet is a finite, nonempty set of symbols
called characters.

« Typically, we use the symbol X to refer to an
alphabet.

A string over an alphabet 2 is a finite sequence
of characters drawn from 2.

Example: Let X = {a, b}. Here are some strings over
2

3 aabaaabbabaaabaaaabbb abbababba
But wait! There are no quotes here!

The empty string has no characters and is
denoted €.



Languages

A language over 2 is a set of strings over .

Example: The language of palindromes over X =
{a, b, c} is the set

« {g, a, b, ¢, aa, bb, cc, aaa, aba, aca, bab, ... }

The set of all strings composed from letters in X
is denoted X*.

« Formally: 2* = { w | wis a string over X }.

Formally, we say that L is a language over X
when L C 2*,



Mathematical Lookalikes

« We now have €, g, >, and X>*. Yikes!

 The symbol € is the... ?
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Mathematical Lookalikes

We now have €, g, X, and X>*. Yikes!

The symbo]
The symbo]

| € 1s the element-of relation.

| € is the empty string.

The symbo!

| 2 denotes an alphabet.

The expression 2* means “all strings that can
be made from characters in 2.”

That lets us write things like
« We have € € 2*, but € € 2.

Ever get confused? Just ask!



The Cast of Characters

Languages are sets of strings.

Strings are finite sequences of characters.

Characters are individual symbols.

Alphabets are sets of characters.

Languages

are sets of

Y

Strings

are nonempty, finite sets of

are finite sequences of

Alphabets

Y

>

Characters




Finite Automata and Languages

e L.et A be an
automaton that
processes strings
drawn from an b a

alphabet X. e :
- The language of A,
denoted N(A), is the

set of strings over X
that A accepts:

NA) = { w € I* | A accepts w }



Finite Automata and Languages

Let D be the automaton shown to the right. It
processes strings over {a, b}.

Notice that D accepts

all strings of a’s and b’s

that end in a and start @
rejects everything else. @

SoND) ={we{ab}*|wendsina }.

NA) = { w € I* | A accepts w }



------------- This means “take this
) transition if you see
anaorab.”

Go to
PollEv.com/cs103spr25

NA) = { w € 2* | A accepts w }



The Story So Far

A finite automaton is a collection of states joined by
transitions.

Some state is designated as the start state.
Some number of states are designated as accepting states.

The automaton processes a string by beginning in the start
state and following the indicated transitions.

If the automaton ends in an accepting state, it accepts the
input.

Otherwise, the automaton rejects the input.

The language of an automaton is the... ?



The Story So Far

A finite automaton is a collection of states joined by
transitions.

Some state is designated as the start state.
Some number of states are designated as accepting states.

The automaton processes a string by beginning in the start
state and following the indicated transitions.

If the automaton ends in an accepting state, it accepts the
input.

Otherwise, the automaton rejects the input.

The language of an automaton is the set of strings it
accepts.



A Small Problem




A Small Problem




A Small Problem




A Small Problem




A Small Problem




A Small Problem




A Small Problem




A Small Problem




A Small Problem

‘ .-"-- LY
-
]
3 & 5 o s = T

-




Another Small Problem




Another Small Problem




Another Small Problem




Another Small Problem




Another Small Problem




Another Small Problem




Another Small Problem




Another Small Problem

< IDEAWHAT
I'M DOING




The Need for Formalism

« To reason about what finite automata can
and cannot do, we should specity their
behavior in all cases.

« The following need to be defined or
disallowed:

« What happens if there is no transition out of
a state on some input?

« What happens if there are multiple
transitions out of a state on some input?



DFAS

- ADFA i1s a

e Deterministic
 Finite
 Automaton

 DFAs are the simplest type of automaton that
we will see in this course.



DFAS

A DFA is defined relative to some alphabet 2.

For each state in the DFA, there must be

exactly one transition defined for each symbol
in 2.

« This is the “deterministic” part of DFA.
There is a unique start state.

There are zero or more accepting states.



Is this a DFA over {0, 1}7?

0
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Designing DFAS

e At each point in its execution, the DFA can only
remember what state it is in.

« DFA Design Tip: Build each state to
correspond to some piece of information you
need to remember.

 Each state acts as a “memento” of what you're
supposed to do next.

* Only finitely many different states means only
finitely many different things the machine can
remember.



Recognizing Languages with DFAs

L ={ w € {a, b}*| the number of b's in w is congruent
to two modulo three }
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More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }

Let’s have the a symbol be a placeholder for *some character that
isn't a star or slash,”

We'll design a DFA for comments: Some cases we need to handle:

Accepted: Rejected:
[*a* [ JEE
/**/ /**/a/*aa*/
/***/ aaa/**/aa

[*aaa*aaa*/ [*]

[*ala*/ [**a]

[ /aaaa




More Elaborate DFASs

L={weH{a * [}*| wrepresents a C-style comment }




Next Time

* Regular Languages
« An important class of languages.
« Nondeterministic Computation
 Why must computation be linear?
 NFAs

 Automata with superpowers.
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